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Abstract. We compare different approximation schemes for investigating ferromagnetism in the periodic
Anderson model. The use of several approximations allows for a detailed analysis of the implications of the
respective methods, and also of the mechanisms driving the ferromagnetic transition. For the Kondo limit,
our results confirm a previously proposed mechanism leading to ferromagnetic order, namely an RKKY
exchange mediated via the formation of Kondo screening clouds in the conduction band. The contrary case
is found in the intermediate-valence regime. Here, the bandshift correction ensuring a correct high-energy
expansion of the self-energy is essential. Inclusion of damping effects reduces stability of the ferromagnetic
phase.

PACS. 71.10.Fd Lattice fermion models (Hubbard model, etc.) – 71.28.+d Narrow-band
systems; intermediate-valence solids – 75.30.Mb Valence fluctuation, Kondo lattice, and heavy-fermion
phenomena

1 Introduction

The periodic Anderson model (PAM) provides probably
the simplest starting point to investigate the interplay be-
tween the hybridization of a periodic array of localized
(f -) electron levels and a band of itinerant electrons, the
strong correlation of the localized electrons and quantum
mechanics (Pauli principle) [1].

Within this model, we will investigate the many-body
problem of ferromagnetic ordering. Ferromagnetism in the
PAM has previously been examined, but most efforts were
aimed solely at the so-called Kondo regime of the model.
This is defined by an integer number of f -electrons per
lattice site. These localized electrons can form an array
of well-defined local moments. Via an RKKY interaction,
these can order ferro- or antiferromagnetically [2–5].

In previous papers, we have shown that in the
intermediate-valence regime of the PAM, defined by a
non-integer filling of the localized levels accompanied
by a larger effective hybridization, ferromagnetic order
is also possible [6–9]. This, however, raises some ques-
tions concerning the driving mechanism for the ferromag-
netic ordering. First of all, in the intermediate-valence
regime, quantum fluctuations effectively delocalize the f -
electrons, thus the formation of stable moments needs fur-

a e-mail: dietrich.meyer@physik.hu-berlin.de

ther explanation. A second question is due to the fact, that
some of the methods used in the above-mentioned papers,
exclude by construction such effects as RKKY as we will
discuss below. So why can these methods give meaningful
results when neglecting something considered as essential
as RKKY exchange? What should be the driving force to-
wards ferromagnetic ordering in the intermediate valence
regime? In this paper, we try to clarify the apparent in-
coherence of the investigations of ferromagnetism in the
PAM in the Kondo and the intermediate-valence regime.

After introducing the model in Section 2.1, we will
discuss several well-known properties of the system in
Section 2.2 and finally, in Section 2.3, introduce a number
of approximation schemes. By comparing to the known
properties discussed before, the advantages and disadvan-
tages of these methods will become clear. In Section 3,
we present and compare results obtained with the differ-
ent methods. Knowing the strengths and shortcomings of
them will help us to understand the origin of ferromag-
netic order. Altogether, this will lead us to the conclusion
that there are indeed two distinct mechanisms at work: in
the Kondo regime, an RKKY exchange has to be seen as
the cause of the ferromagnetic order. In the intermediate-
valence regime, however, the situation resembles more that
of a band-ferromagnet as described by the single-band
Hubbard model. In Section 4, we will conclude with a
summary of our findings.
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2 Theory

2.1 The periodic Anderson model

We investigate the standard form of the periodic Anderson
model (PAM) where a non-degenerate localized f -
level hybridizes with a non-degenerate conduction band
(“s-band”) via an on-site hybridization:

H =
∑
k,σ

(ε(k) − µ)s†kσskσ +
∑
i,σ

(ef − µ)f†iσfiσ (1)

+ V
∑
i,σ

(f†iσsiσ + s†iσfiσ) +
1
2
U
∑
i,σ

n
(f)
iσ n

(f)
i−σ.

Here, skσ (fiσ) and s†kσ (f†iσ) are the creation and anni-
hilation operators for a conduction electron with Bloch
vector k and spin σ (a localized electron on site i and
spin σ) and n

(f)
iσ = f†iσfiσ. skσ = 1

N

∑
k eik·Risiσ and

ε(k) is the dispersion of the conduction band and ef
is the position of the localized level. The hybridization
strength V is taken to be k-independent, and finally,
U is the on-site Coulomb interaction strength between
two f -electrons. Throughout this paper, the conduction
band will be described by a Bloch (free) density of states,
ρ0(E) = 1

N

∑
k δ(E − ε(k)), of semi-elliptic shape. Its

width W = 1 sets the energy scale, and its center of grav-
ity the energy-zero: Tii = 1

N

∑
k ε(k) != 0.

The problem of determining the relevant (Zubarev)
Green functions [10,11],

G
(f)
ijσ(E) = 〈〈fiσ ; f†jσ〉〉; G

(s)
ijσ(E) = 〈〈siσ ; s†jσ〉〉 (2)

G
(f,s)
kσ =

1
N

∑
k

eik·(Ri−Rj)G
(f,s)
ijσ (E) (3)

can be reduced to the a priori unknown self-energy via
the formal solution of the respective equations of motion:

G
(s)
kσ(E) =

E − (ef − µ)−Σkσ(E)
(E−(ef−µ)−Σkσ(E))(E−(ε(k)−µ)) − V 2

(4a)

G
(f)
kσ (E) =

1
E − (ef − µ)− V 2

E−(ε(k)−µ) −Σkσ(E)
· (4b)

Here, the self-energy is defined by

Σkσ(E)G(f)
kσ (E) = U

1
N

∑
p,q

〈〈f†p−σfq−σfp+k−qσ; f†kσ〉〉 ·

(5)

Throughout this paper, we will apply the local approxi-
mation, i.e. assume a k-independent self-energy. Although
becoming exact only in the limit of infinite spatial dimen-
sions, it was shown that this approximation gives satisfac-
tory results already for three dimensions [12,13].

From the Green functions (4a, 4b), the f - and s-
quasiparticle densities of states (f - and s-DOS) can be

calculated:

ρ(s)
σ (E) = − 1

πN

∑
k

=G(s)
kσ(E − µ+ i0+) (6a)

ρ(f)
σ (E) = − 1

πN

∑
k

=G(f)
kσ (E − µ+ i0+). (6b)

The spin-dependent average occupation number n(s,f)
σ can

now easily be determined:

n(s)
σ = 〈s†iσsiσ〉 =

∫ +∞

−∞
dE f−(E)ρ(s)

σ (E) (7a)

n(f)
σ = 〈f†iσfiσ〉 =

∫ +∞

−∞
dE f−(E)ρ(f)

σ (E). (7b)

Here, f−(E) denotes the Fermi function and =x the imag-
inary part of x.

Before introducing our approximative methods, let us
discuss some general properties of the PAM.

2.2 General properties

2.2.1 The hybridization-free case

For vanishing hybridization strength V (“atomic limit”),
the problem reduces to that of the zero-bandwidth
Hubbard model [11,14]. One obtains for the f -Green func-
tion:

G(f,at.)
σ =

E − (ef − µ)− U(1− n(f)
−σ)

(E − (ef − µ))(E − (ef − µ)− U)
(8)

with the respective self-energy:

Σ(at.)
σ (E) =

Un
(f)
−σ(E − (ef − µ))

E − (ef − µ)− U(1− n(f)
−σ)
· (9)

The excitation spectrum consists of two peaks located at
ef and ef + U , which are called charge excitations. The
conduction band DOS remains unchanged.

2.2.2 The non-interacting limit

The second trivial limit, the interaction-free limit (U = 0),
yields the following f -Green function:

G
(f,U=0)
kσ (E) =

1
E − (ef − µ)− V 2

E−(ε(k)−µ)

· (10)

The DOS now consists of two features, one correspond-
ing to the f -level, which becomes broadened due to the
hybridization. The other feature is the renormalized con-
duction band. Due to the hybridization there is also an
admixture of f -spectral weight into the conduction band
region and vice versa. The amount of this admixture
of f - and s-states can be understood as a rough esti-
mate of the effective hybridization. It is generally stronger
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Fig. 1. Density of states for V = 0.2, ef = −0.75 and −0.25 in
the interaction-free limit (U = 0). Thick lines: f-contribution,
thin lines conduction band contribution.

for ef close to, or inside the conduction band as for ef well
below the band. A further effect is clearly visible when ef
lies within the conduction band. Level-repulsion between
f -level and the conduction band induces a gap located
approximately at ef . For ef below the conduction band,
the level repulsion appears only in form of a small shift
of the lower edge of the conduction band and the center
of the f -level is situated slightly below ef .

These two situations are clearly distinct, one expects
different findings in each. The situation of ef well below
the conduction band leads for finite (large) U to the Kondo
regime of the PAM. Here the f -level is almost integer-
filled. The opposite case, with ef located within the band
and a hybridization strong enough to lead to non-integer
n(f), is called intermediate-valence regime. Both situations
are plotted in Figure 1.

2.2.3 High-energy expansion

Next, we introduce a useful high-energy expansion for the
f -electron Green function and the self-energy:

G
(f)
kσ (E) =

∫
dE′

Skσ(E′)
E −E′ =

∞∑
n=0

M
(n)
kσ

En+1

Σkσ(E) =
∞∑
n=0

C
(n)
kσ

En
· (11)

Skσ(E) = − 1
π=G

(f)
kσ (E) is the spectral density. Its mo-

ments, which are the coefficients of the high-energy ex-
pansion of G(f)

kσ (E), are defined by

M
(n)
kσ =

∫
dE EnSkσ(E); n = 0, 1, 2, . . . (12)

and can be calculated independently via

M
(n)
kσ = 〈[[. . . [fkσ,H]−, . . . ,H]−︸ ︷︷ ︸

n-fold commutator

, f†kσ]+〉 (13)

where [. . . , . . . ]− denotes the commutator and [. . . , . . . ]+
the anti-commutator. By inserting (11) into (4b), one can
determine the coefficients of the self-energy expansion.

For the approximative approaches presented below, we
only need the local moments M

(n)
σ = 1

N

∑
kM

(n)
kσ and

coefficients C(n)
σ = 1

N

∑
k C

(n)
kσ :

M (0)
σ = 1 (14a)

M (1)
σ = ef + Un

(f)
−σ (14b)

M (2)
σ = e2

f + 2efUn
(f)
−σ + U2n

(f)
−σ + V 2 (14c)

M (3)
σ = e3

f+3e2
fUn

(f)
−σ+U2ef (2n(f)

−σ+n(f)2

−σ )+U3n
(f)
−σ

+V 2(2ef+2Un(f)
−σ+Tii)+U2n

(f)
−σ(1− n(f)

−σ)B−σ
(14d)

and

C(0)
σ = Un

(f)
−σ (15a)

C(1)
σ = U2n

(f)
−σ(1− n(f)

−σ) (15b)

C(2)
σ = U2n

(f)
−σ(1− n(f)

−σ)(B−σ + U(1− n(f)
−σ)). (15c)

The abbreviation B−σ in (14) and (15) stands for a higher
correlation function called bandshift :

n
(f)
−σ(1− n(f)

−σ)(B−σ − ef) = V 〈f †i−σsi−σ(2n(f)
iσ − 1)〉 ·

(16)

In spite of the fact that it is a “higher” correlation function
it can rigorously be expressed by the Green function (4b)
and the self-energy (5) [15]:

n
(f)
−σ(1− n(f)

−σ)(B−σ − ef) =

− 1
π
=
∫ +∞

−∞
dEf−(E)

(
2
U
Σσ(E)− 1

)
(17)

×
(

(E − (ef − µ)−Σσ(E))G(f)
iiσ (E)− 1

)
.

Surprisingly the hybridization V does not explicitly ap-
pear in the C(n)

σ . The contributions via the moments (14)
are exactly cancelled by those from the term V 2

E−(ε(k)−µ)

in (4b). From this, one conclusion can already be drawn:
The hybridization V enters the calculation only via
equation (4b) in combination with the free conduc-
tion band dispersion ε(k). Although there are clearly
correlation-induced effects in the conduction band (cf.
Eq. (4a)), these do not feed back into the determina-
tion of the high-energy features of the self-energy. Any
RKKY-like indirect exchange between f -sites driven by
correlations (cf. Ref. [3]), leaves no footprints in the high-
energy behaviour of the self-energy. Although this rea-
soning works only in the local approximation, it does
not imply that the local approximation itself suppresses
any RKKY exchange (cf. discussion and references in
Sect. 2.3.4).

The prominent high-energy features of the PAM are
the charge excitations known from the zero-hybridization
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limit. One can easily check that in this limit the mo-
ments (14) and self-energy coefficients (15) are fulfilled
since B−σ → ef . So obviously, the bandshift, and there-
fore the n = 3-moment take care of a correction of the
positions and weights of the charge excitations in the case
of finite interaction and hybridization. We will show below
that this correction can be decisive for a proper descrip-
tion of ferromagnetism in the PAM.

2.2.4 Low-energy properties

The PAM is the lattice-periodic extension of the single-
impurity Anderson model (SIAM). Since the latter is
famous for its special low-energy features (“Kondo-
physics”) [1], one expects similar findings also for the
PAM. The most prominent finding for the SIAM is the
Kondo-screening: At low temperatures, the magnetic mo-
ment of the impurity-site is screened by conduction elec-
trons. The remaining conduction electrons form a Fermi
liquid. All physical quantities can be scaled by a single en-
ergy: the Kondo temperature TK. In the excitation spec-
tra, the most significant signature of the screening is the
occurence of a sharp resonance at the chemical potential,
the Kondo resonance.

The low-energy properties of the PAM have been the
subject of intense research [1,2,16–19]. For the symmet-
ric PAM, defined by n(f) = n(s) = 1.0 and ef = −U/2,
a Kondo resonance appears centered at µ. But contrary
to the SIAM, it is split by a gap, the coherence gap
and the system is insulating. Picturing the Kondo res-
onance as virtual f -level [20], the gap is simply due to
level-repulsion between the “flat band” of the virtual f -
levels at every lattice-site and the conduction band. Al-
though it originates from the same mechanism as the
gap discussed in Section 2.2.2, it is clearly distinguish-
able: The coherence gap is, together with the Kondo res-
onance, pinned at µ whereas the hybridization gap dis-
cussed in the interaction-free limit would show up at ef .
In Figure 2, we present the densities of states as ob-
tained with the below-discussed modified perturbation
theory (MPT). Although these DOS are calculated within
an approximative method, the qualitatively same pic-
ture emerges from the numerically exact Quantum Monte
Carlo (QMC) [2,21] and numerical renormalization group
calculations (NRG) [18] and can thus be believed to be
qualitatively correct.

The situation of the symmetric PAM is plotted at the
bottom of Figure 2. Moving away from the symmetric
PAM, e.g. by reducing the number of conduction elec-
trons, the system becomes metallic again. The Kondo res-
onance gets asymmetric relative to µ, the coherence gap
is shifted away from the chemical potential. Further away
from the symmetric parameters, the coherence gap closes,
which is probably due to quasiparticle damping, since
=Σσ(E) ∼ E2.

A still open question is that of a unique energy scale
similar to TK for the SIAM. The main problem un-
der discussion is the exhaustion problem introduced by
Nozières [22]. For the case of a periodic array of localized
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Fig. 2. f-Density of states as obtained within the MPT (see
text) for V = 0.2, U = 2, n(f) = 1.0 and different n(s) as
indicated. ef was determined such that n(f) = 1 holds. The
chemical potential is positioned at the arrows. The inset shows
the full energy range, the main picture just the region around µ.

f -levels, the system cannot make available enough con-
duction electrons to screen all f -moments. This situation
is still subject to many investigations [3,18,19,21,23].

2.3 Approximative solution of the PAM

In the following sections, we will introduce a series of
approximation methods to determine the self-energy (5)
of the periodic Anderson model. This series represents
a subsequent improvement of the theory along the lines
discussed in the last section: The Hubbard-I approxima-
tion recovers the non-interacting and the hybridization-
free limit but fails to reproduce the high-energy behaviour
of the self-energy. This is corrected by the spectral den-
sity approximation. This method, however, still suffers
from the complete neglection of quasiparticle damping.
A straightforward method to incorporate this is the mod-
ified alloy analogy. Finally, the low-energy behaviour can
be qualitatively reproduced by the modified perturbation
theory.

2.3.1 The Hubbard-I approximation

The first approach presented here is a crude interpolation
between the two exactly solvable limiting cases V = 0 (cf.
Sect. 2.2.1) and U = 0 (cf. Sect. 2.2.2). The result equals
that of Hubbard’s first work on the Hubbard-model [14],
the Hubbard-I approximation.

In the interaction-free limit, one can express the f -
Green function (10) in terms of the corresponding U = 0-
V = 0 (“atomic”) solution:

G
(f,U=0)
kσ (E) =

1(
G

(f,U=0,at.)
σ (E)

)−1

− V 2

E−(ε(k)−µ)

·

(18)

The Hubbard-I approximation is now obtained by assum-
ing the functional dependence of (18) also for the finite-
U case. With the atomic-limit Green function for the full



D. Meyer and W. Nolting: Ferromagnetism in the periodic Anderson model 389

PAM (8), this essentially corresponds to inserting the self-
energy (9) into equation (4b), therefore

Σ(H-I)
σ (E) = Σ(at.)

σ (E) =
Un

(f)
−σ(E − (ef − µ))

E − (ef − µ)− U(1− n(f)
−σ)
·

(19)

Although this method is by construction exact in two lim-
iting cases, namely the interaction-free (U = 0) and the
hybridization-free (V = 0) case, a number of shortcom-
ings follows directly from inspecting equation (19) and
its derivation. First of all, the self-energy (19) fulfills the
high-energy expansion only up to the n = 1 self-energy co-
efficient. The bandshift correction B−σ is neglected. This
yields a weak spin-dependence through the expectation
values n(f)

−σ = 〈n(f)
i−σ〉 only. Second, the self-energy (19)

is real, any quasiparticle damping effects as indicated by
a finite imaginary part of Σσ(E) are ignored. The third
drawback is the suppression of any feedback mechanism
from the conduction band: The latter enters the calcula-
tion only via equation (18). This implies that although
there are correlation-induced changes in the conduction
band (cf. Eq. (4a)), these do not feedback into the f -
self-energy (19). An indirect magnetic exchange between
the f -electrons via polarization of the conduction band
(“RKKY”) cannot appear in this approximation method.
Finally, none of the expected low-energy features of the
PAM, as discussed in Section 2.2.4 can be found using
this method.

2.3.2 The spectral density approximation

The spectral density approximation (SDA) [11,24,25] is
the result of a direct improvement of the above-discussed
Hubbard-I approximation with respect to the high-energy
expansion (11).

Starting with an ansatz for the self-energy using the
same functional structure as (19),

Σσ(E) = α1σ
E − α2σ

E − α3σ
(20)

one can fit the coefficients αpσ in such a way that the
high energy expansion of the self-energy (11) with the
coefficients (15) is fulfilled. One readily arrives at

Σ(SDA)
σ (E) =

Un
(f)
−σ(E −B−σ − (ef − µ))

E −B−σ − (ef − µ)− U(1− n(f)
−σ)
· (21)

The SDA self-energy differs from the Hubbard-I solution
by the bandshift B−σ (16). It is introduced by the n = 3-
moment (14d) and responsible to reproduce the correct
high-energy behaviour of the f -Green function. It leads
to a (possibly spin-dependent) shift of the positions of
the f -peaks in the density of states. So without loosing
any of the advantages of the Hubbard-I approximation,
as the correct reproduction of the U = 0 and the V = 0
limits and its numerical simplicity, one major drawback

of this method can be removed. However, the other points
of criticism, as the missing quasiparticle damping and the
incorrect low-energy properties remain.

The name “spectral density approximation” stems
from its application to the Hubbard model, where this
approach is derived by a physically motivated two-pole
ansatz for the spectral density [24,25]. Results for the SDA
in the context of the PAM were previously published [6,7].
In these papers, the SDA was applied to a set of effective
Hubbard models, onto which the PAM could be mapped.
However, the above-described procedure leads to exactly
the same results as those published in references [6,7].

2.3.3 The modified alloy analogy

Now we want to present a method that resolves one ma-
jor drawback of the already introduced methods: Both the
Hubbard-I and the SDA self-energies are real. Quasipar-
ticle damping as represented by a finite imaginary part of
the self-energy is therefore completely neglected. A well-
known method to incorporate damping effects is the alloy-
analogy approach. By using physical intuition or by other
justified means, the original problem is mapped onto a
fictitious alloy, which subsequently can be solved using
standard methods as e.g. the coherent potential approxi-
mation (CPA) [26].

The CPA represents the best “single-site” method for
solving an alloy-problem [11]. Single-site approximation in
this context is equivalent to the already introduced local
approximation or k-independence of the self-energy. The
alloy is defined by the energy levels of its components,
Epσ and their respective concentrations xpσ , where the
index p numbers the components. The corresponding self-
energy can be determined by solving the CPA-equation:

0 =
n∑
p=1

xpσ
Epσ −Σσ(E)− ef

1−G(f)
iiσ (E)(Epσ −Σσ(E)− ef)

· (22)

In the conventional alloy analogy for the PAM [27–29], the
artificial alloy is determined by the poles of the atomic
limit f -Green function (8) and their respective weights:

E
(AA)
1σ = ef ; x

(AA)
1σ = 1− n(f)

−σ (23)

E
(AA)
2σ = ef + U ; x

(AA)
2σ = n

(f)
−σ.

This choice, however, is in no way predetermined. In
reference [8], another alloy analogy, the modified alloy
analogy (MAA) was proposed for the PAM in analogy
to the MAA for the Hubbard model [30]: By inserting
equation (11) into (22) and comparing the coefficients
in 1/E, an optimum two-component alloy analogy with
respect to the high-energy behaviour can be found:

E1,2σ =
1
2

[B−σ + U + ef

±
√

(B−σ + U − ef )2 + 4Un(f)
−σ(ef −B−σ)] (24)

x1σ =
E2σ − ef − Un(f)

−σ
E2σ −E1σ

= 1− x2σ.
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It should be noted that E1,2σ coincide with the poles of
the SDA Green function (cf. Eqs. (21, 4b)) when the term

V 2

E−(ε(k)−µ) in the denominator of the Green function is
neglected.

By construction, the MAA fulfills the high-energy ex-
pansion (11) up to the n = 3 moment or equivalently
the n = 2 self-energy coefficient (15c). Also, damping ef-
fects are considered. However, the MAA still suffers from
the complete neglection of the low-energy properties (cf.
Sect. 2.2.4) and the self-energy is determined in such a
way that correlation effects within the conduction band
do have no influence (“feedback”) onto Σσ(E). A more
detailed discussion of the MAA applied to the PAM can
be found in reference [8].

2.3.4 The modified perturbation theory

Let us finally introduce the modified perturbation theory.
This approach is based on the dynamical mean-field the-
ory (DMFT) [31,32]. In the case of a local self-energy,
which becomes exact in the limit of infinite spatial di-
mensions [33,34], the PAM can be mapped onto a single-
impurity Anderson model (SIAM) with the Hamiltonian,

H =
∑
k,σ

(ε(k)− µ)s†kσskσ +
∑
σ

(ed − µ)d†σdσ (25)

+
∑
σ

Vkd(d†σskσ + s†kσdσ) +
1
2
U
∑
σ

n(d)
σ n

(d)
−σ.

The notation is as for the PAM (cf. Eq. (1)). d(†)
σ are the

annihilation (creation) operators for electrons at the im-
purity, its energy level is ed. In the case of the DMFT, the
bath of conduction electrons, usually defined by ε(k) and
Vkd need not be specified in detail. For all practical calcu-
lations, it is sufficient to know the hybridization function
∆(E), in the pure SIAM defined by ∆(E) =

∑
k

V 2
kd

E−ε(k) .
However, for the mapping of the DMFT to be successful,
the hybridization function has to be determined according
to the self-consistency condition [32]

∆σ(E) = E − (ef − µ)−Σσ(E)−
(
G

(f)
iiσ (E)

)−1

. (26)

This implies that in case of symmetry breaking, the hy-
bridization function becomes spin-dependent. Now one
can make use of the fact that the impurity self-energy
of the SIAM defined by equation (26) is equivalent to the
self-energy of the PAM. The advantage of the mapping
is that the SIAM is one of the simplest know many-body
models, several exact statements as well as well-tested ap-
proximative solutions are known. In the following, we ap-
ply the modified perturbation theory, which was explained
and discussed in detail elsewhere [9,19,35,36]. So we will
restrict ourselves to a short summary of this approach.

Starting point is the following ansatz for the self-
energy [37–39]:

Σσ(E) = U〈n(f)
−σ〉+

ασΣ
(SOC)
σ (E)

1− βσΣ(SOC)
σ (E)

(27)

ασ and βσ are introduced as parameters to be determined
later. Σ(SOC)

σ (E) is the second-order contribution to per-
turbation theory around the Hartree-Fock solution [40,
41,13]. Equation (27) can be understood as the simplest
possible ansatz which can, on the one hand, reproduce the
perturbational result in the limit U → 0, and, on the other
hand, recovers the atomic limit for appropriately chosen
ασ and βσ [42].

Using the perturbation theory around the Hartree-
Fock solution introduces an ambiguity into the calcula-
tion. Within the self-consistent Hartree-Fock calculation,
one can either choose the chemical potential to be equiva-
lent to the chemical potential of the full MPT calculation,
or take it as parameter µ̃ to be fitted to another phys-
ically motivated constraint. In reference [39] and other
papers [43,44], the Luttinger theorem [45] or equivalently
the Friedel sum rule [46,47] was used to determine µ̃. Since
these theorems are applicable only for T = 0, this limits
the calculations to zero temperature. In order to access fi-
nite temperatures, we used the condition of identical elec-
tron densities for the Hartree-Fock and the full calcula-
tion (n(f,HF)

σ = n
(f)
σ ). In our view, it is more reasonable to

perform the Hartree-Fock calculation for the same elec-
tron density rather than identical chemical potential of
the full MPT calculation since the electron density is a
critical parameter concerning correlation effects. A more
detailed analysis of the different possibilities to determine
µ̃ is found in reference [35]. Finally, the parametersασ and
βσ have to be determined. Instead of using the “atomic”
limit of V = 0 as was done e.g. in references [39,44,48], we
make use of the moments of the spectral density. Analo-
gously to equations (11, 13, 14), these can be evaluated for
the SIAM. To fit the two parameters of ansatz (27), the
first three self-energy coefficients are needed, since C(0)

σ is
reproduced for any choice of ασ and βσ.

As for the PAM, a bandshift correlation function sim-
ilar to (16) is introduced via C

(2)
σ and the procedure

leads to the correct high-energy behaviour of the Green
function for the SIAM and via the DMFT-mapping also
for the PAM. So while recovering the main advantage
of the SDA and MAA, namely the correct reproduction
of the high-energy expansion (11) up the n = 3-moment,
the MPT yields a major improvement concerning the low-
energy properties of the PAM. Although already for the
SIAM the low-energy scale (“Kondo temperature” TK)
connected with these properties, cannot be quantitatively
reproduced, other quantities can, at least in a qualitatively
satisfactory way, be recovered [19,36]. In particular, the
densities of states both above and below the Kondo tem-
perature, but also the general features of the susceptibility
χ(T ) seem to be trustworthy. Another test of the low-
energy properties is given by the Friedel sum rule, which
links the self-energy at the Fermi energy with the electron
density. Within the MPT, it is fulfilled in a large param-
eter space [36]. It is also worth mentioning that via the
DMFT self-consistency (26), a feedback from correlation-
induced features in the conduction band onto the f -self-
energy is possible. In the limit of infinite spatial dimension
(d → ∞), where the DMFT becomes exact, the RKKY
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Fig. 3. s-DOS (f-DOS) as dotted (solid) lines for V = 0.1, U = 1 and n(tot) = 2.0. The respective value of ef is given in
each graph. The position of the chemical potential is denoted by the arrows. The left column was calculated with the SDA, the
middle within MAA and the right column within MPT.

exchange between any two lattice sites will vanish. How-
ever, as discussed in reference [2], the net exchange of one
lattice site with a shell of neighbors remains finite since the
number of sites in the respective shell diverges as d→∞.
This exchange is incorporated in the (spin-dependent) hy-
bridization function (26).

3 Results and discussion

In the following we will present the results obtained
with the different approximation schemes of Section 2.3
and hope to shed some light on the mechanism that
leads to ferromagnetism in the PAM in the Kondo- and
intermediate-valence regime. First however, we will look at
the paramagnetic quasiparticle densities of states (DOS)
as defined by equations (6a, 6b).

In Figure 3, both the f - and s-DOS are plotted for a
relatively small interaction strength U = 1.0 and V = 0.2,
n(tot) = 2.0 at zero temperature and for various ef as in-
dicated. The second picture from the bottom represents
the above-introduced symmetric case with ef = −0.5 =
−U/2. The position of the chemical potential µ is indi-
cated by the arrows. The left column was obtained using

the SDA, the middle MAA and the right column by using
the MPT.

The SDA DOS differs from the interaction-free case
(cf. Sect. 2.2.2) plotted in Figure 1 by the appearance of a
second charge excitation approximately at ef+U . If either
ef or ef +U falls within the band region, a hybridization
gap as discussed in Section 2.2.2 is clearly visible. The
Hubbard-I results are not shown in Figure 3. These look
very similar to the SDA DOS, only a small shift of the
charge excitations can be noticed. In the symmetric case
they are identical, the bandshift vanishes.

The MAA DOS shows some modifications when com-
pared to the SDA: The quasiparticle damping softens
the charge excitations and the hybridization gap is for
ef . 0 almost closed. For ef & 0.25 the DOS strongly re-
sembles the SDA results. This can be understood since
the number of f -electrons, n(f) is very small. Scatter-
ing processes become rare and the quasiparticle damping,
which differentiates between SDA and MAA, negligible.
As in the case of the SDA and Hubbard-I approximation,
the simpler theory disrespecting the high-energy expan-
sion and neglecting the bandshift correction, in this case
the conventional alloy analogy (23), yields very similar
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and in the symmetric case identical results. We will see
below that the bandshift correction becomes much more
important in the ferromagnetic phase.

Finally, the DOS obtained by MPT shows remark-
able differences, especially close to the chemical poten-
tial. These represent the “Kondo physics” discussed in
Section 2.2.4. Again, we note that for ef & 0.25 the DOS
resemble the SDA and MAA results. This is obviously for
the same reasons as discussed above, namely the small
number of f -electrons.

In Figure 4, the f - and s-magnetization is plotted as
function of the total electron density n(tot) for U = 4,
ef = −0.35, V = 0.1 and T = 0. Within the Hubbard-I
approximation, a small region of ferromagnetism is found
around n(tot) ≈ 1. The conduction band magnetization
m(s) is always positive. We call this situation parallel s-f
coupling.

In the SDA the region of ferromagnetism is strongly
enlarged. This is a clear indication of the importance of
the bandshift correction with respect to ferromagnetism.
Since the bandshift (16) can be spin-dependent, it en-
hances the possibility of ferromagnetic ordering. We also
note an interesting behaviour of the conduction band mag-
netization: as function of electron density, it changes sign.
For low n(tot), the s-f coupling is parallel, for higher values
antiparallel. This behaviour, which is also found within
the MAA and MPT, can be traced back to the appear-
ance of the hybridization gap discussed in Section 2.2.2.
A more detailed investigation of this can be found in
references [8,9].
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Fig. 5. T = 0 phase diagram for the PAM in the intermediate-
valence regime with U = 4 and V = 0.2 as obtained within
SDA, MAA and MPT calculations. For the MAA, the phase
diagram for V = 0.1 is additionally plotted as thin lines. The
dotted lines separate the regions of parallel (below the dot-
ted line) and anti-parallel (above) s-f coupling. Note: for the
MAA with V = 0.2, the low-density ferromagnetic region ex-
hibits only parallel, the high-density region only antiparallel
s-f-coupling.

The MAA result can be used to estimate the influence
of quasiparticle damping. One observes a reduction of the
ferromagnetic region compared to the SDA result. So, sim-
ilar to the Hubbard model [30,49], quasiparticle damping
is unfavorable for ferromagnetism. However, apart from
the lower critical n(tot), the MAA and SDA curves are
very similar. It should be noted that with the conven-
tional alloy analogy (23), no ferromagnetic solution can
be found [27]. This confirms again the importance of the
bandshift correction (16) with respect to ferromagnetism.

The same holds true for the MPT result. Again, the
region of ferromagnetism is reduced as compared to the
MAA, but the change is rather small. Qualitative features
as the change of sign of the conduction band magnetiza-
tion, and the generally larger conduction band polariza-
tion in case of parallel coupling remain the same for SDA,
MAA and MPT. It should further be pointed out that
the lower critical n(tot) is, when varying ef , in fact deter-
mined by n(f). The number of conduction band electrons,
n(s) plays no significant role [9].

From all these observations we conclude that the band-
shift correction has a strong influence on ferromagnetism.
So does the inclusion of quasiparticle damping. However,
at least in the examined situation of the PAM in the
intermediate-valence regime, there seems to be no ma-
jor difference between the MAA without, and the MPT
including the special low-energy properties of the PAM.
These have apparently less influence on ferromagnetism
in the intermediate-valence regime of the PAM.

A quite similar picture emerges from an inspection of
the phase diagram in Figure 5. A comparison of SDA and
MAA results shows the negative influence of quasiparticle
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damping on ferromagnetism. Furthermore, another impor-
tant point should be noticed here: in the MAA calculation,
a hybridization strength of V = 0.2 already strongly re-
duces the magnetic region compared to the V = 0.1 case.
It is apparent that only the region with antiparallel s-f
coupling is affected by this. The region with parallel s-f
coupling remains almost unchanged. It was shown in refer-
ence [8] that the MAA shows an anomalous hybridization
dependence in this region. Whereas for other electron den-
sities, an increasing hybridization strength V quickly sup-
presses ferromagnetism [8], here the Curie temperature in-
creases with increasing V after going through a minimum.
The same behaviour is found within the SDA. However,
the MPT does not show this behaviour at all. As dis-
cussed in reference [19], the local moments get quenched
by formation of local Kondo singlets with increasing V .
Being of low-energy nature, this effect is not covered by
the other approximation schemes. The apparent stability
of ferromagnetism around n(tot) ≈ 1 in these methods for
large hybridization strengths seems therefore to be rather
meaningless.

A further difference between MAA and MPT is the
upper critical f -level position ef . The modifications in the
MPT are due to the fact that the lower charge excitation
joins with the Kondo resonance. The existence of the latter
is neglected in the MAA. The MPT seems to be more
reliable for determining this phase boundary.

In Figure 6, the Curie temperatures as function of the
total electron density are plotted for the same model pa-
rameters as used in Figure 4. Again the conclusions are
consistent: The quasiparticle damping which basically dis-
criminates SDA and MAA, leads to a huge reduction of
Tc. The inclusion of the low-energy physics, as done by the
MPT, does not change Tc much, only above n(tot) ≈ 1.5, a
suppression of Tc is observed. It is further noteworthy that
the change of sign of the conduction band magnetization
as seen in Figure 4 does not lead to any particularity in
the Tc curves.

Up to now we have focused on the PAM in the
intermediate-valence regime. What happens to the fer-
romagnetic solution upon entering the Kondo regime?
The situation is plotted in Figure 7. The inset shows the
f -magnetization. All three methods (SDA, MAA and
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Fig. 7. Difference of the internal energy for the paramagnetic
and ferromagnetic solution (see text). The inset shows the f-
magnetization of the ferromagnetic solution. All calculations
for U = 4, V = 0.1, T = 0 and n(tot) = 1.2.

MPT) do have a self-consistent ferromagnetic solution for
ef well below the conduction band. An inspection of the
internal energies 〈H〉, which can be calculated analogously
to (7) and (17), of the ferromagnetic and the paramagnetic
solution reveals, however, that for the SDA and MAA the
ferromagnetic solutions are not the stable ones, the system
is in fact paramagnetic. This is not the case for the MPT.
Here the ferromagnetic solution remains stable. This indi-
cates that in the Kondo regime, the low-energy properties
become much more important concerning ferromagnetic
ordering. This was first proposed in reference [3], where
the origin of ferromagnetic order in the Kondo regime
was identified as RKKY-like. The polarization of the con-
duction band is due to the formation of Kondo screening
clouds [3]. As was already argued in Section 2.3, the MAA
and the SDA are not able to reproduce such a mechanism
whereas the MPT should contain this at least qualita-
tively.

So whereas in the intermediate-valence regime, the
SDA, the MAA and the MPT show similar results, they
give completely different pictures in the Kondo regime.
This leads us to the conclusion that there have to be two
distinct mechanisms driving the ferromagnetic ordering in
these two different areas in parameter space. Whereas in
the Kondo regime, a RRKY mechanism is doubtless the
key factor, as discussed above and in reference [3], the
situation is clearly different in the intermediate-valence
regime. Here, the correct reproduction of high-energy fea-
tures, the charge excitation as ensured by the bandshift
correction (16) seems crucial. The inclusion of the partic-
ular low-energy properties of the PAM does not signifi-
cantly change the behaviour. From our observations, we
are led to propose a single-band mechanism similar to the
one leading to ferromagnetism in the single-band Hubbard
model to be responsible for the ferromagnetic ordering in
the intermediate-valence regime.

This proposal is further supported by the following ob-
servations:
I) The critical interaction strength Uc is much larger
in the intermediate-valence regime than in the Kondo
regime thus pointing to a genuine strong-coupling effect
(cf. Ref. [9]).
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II) The lower critical n(tot) marking the breakdown of fer-
romagnetism is in fact determined by a critical n(f) [9].
The conduction electron density has no influence on the
magnetic phase boundaries. This is a clear reference to a
single-band mechanism.
III) The polarization of the conduction band shows a re-
markable behaviour as e.g. its change of sign. This, how-
ever, does not affect important magnetic quantities as the
Curie temperature. The polarization of the conduction
electrons seems to be a consequence and not the cause
of the ferromagnetic ordering of the f electrons.

From these points, we arrive at the proposition
that the ferromagnetic order in the intermediate-valence
regime is due to some intra-band mechanism. For the
Hubbard model [14,50,51], the existence of a ferromag-
netic phase in the strong-coupling regime was confirmed
in the limit of infinite dimensions [52,53]. The mechanism
driving this transition is simply based on a gain of ki-
netic energy [54,49]. This is supported by the strong de-
pendency on the shape of the free (U = 0) density of
states [55,56]. It was confirmed that ferromagnetism is
most favored in case of a non-symmetric DOS which has
a divergence at or close to one of its edges. Going back
to the PAM, we note that the hybridization leads in the
intermediate-valence regime to an effective f -f -hopping.
The f -electrons form a strongly correlated band. This
band fits well into the prerequisites of a single-band ferro-
magnet as lined out above: The band is narrow, strongly
asymmetric and most of its spectral weight is, for appro-
priate values of ef , located near its edge (cf. Fig. 1, thick
lines). The proposed similarity between ferromagnetism in
the intermediate-valence regime of the PAM and the Hub-
bard model manifests itself also in the fact that in both
cases, the fulfillment of the high-energy expansion (11) (as
done by SDA, MAA and MPT) seems crucial for a proper
description of the phenomenon [49].

4 Summary

In this paper, we have discussed ferromagnetism in the pe-
riodic Anderson model (PAM), and possible mechanisms
driving the magnetic ordering.

We have reviewed a series of approximation schemes,
from the Hubbard-I, via the spectral-density approxima-
tion (SDA) and the modified alloy analogy (MAA) to the
modified perturbation theory (MPT). This series repre-
sents a subsequent improvement according to several ex-
actly known properties of the model. The Hubbard-I ap-
proximation is exact in the two limiting cases of vanishing
hybridization (V = 0) and interaction (U = 0). Its sys-
tematic improvement with respect to the correct repro-
duction of the high-energy expansion of the self-energy
leads directly to the spectral density approximation. The
inclusion of quasiparticle damping effects without loos-
ing the correct high-energy behaviour is possible via the
modified alloy analogy procedure. Finally, the modified
perturbation theory still recovers the correct high-energy
expansion, includes quasiparticle damping effects, and ad-

ditionally incorporates, at least qualitatively correct, the
special low-energy properties of the PAM.

The results of the SDA, MAA and MPT compare well
in the intermediate-valence regime. By comparing with
the Hubbard-I approximation, it becomes clear that the
correct reproduction of the high-energy behaviour is cru-
cial for a correct description of ferromagnetism in this pa-
rameter regime. The influence of quasiparticle damping
is, as expected, a reduction of the magnetic stability as
indicated by a strongly reduced Curie temperature and
smaller ferromagnetic area in the T = 0 phase diagram.
The low-energy physics seem to have only minor effects
on the ferromagnetic properties.

In the Kondo regime, the picture is completely differ-
ent. Only the MPT yields a stable ferromagnetic phase.
This, however, is in agreement with QMC calculations [3].
The SDA and MAA fail to recover these results. The origin
of the ferromagnetic ordering in the Kondo regime is an
RKKY exchange as discussed in reference [3]. We showed
in this paper why the SDA and MAA cannot reproduce
such a mechanism.

However, the good qualitative agreement between the
SDA, MAA and MPT results in the intermediate-valence
regime let us believe that here the driving mechanism to-
wards the ferromagnetic transition must be of different
nature. Our results gave some hints that this mechanism
is similar to that driving the ferromagnetic ordering in
the single-band Hubbard model with a band formed by
the effectively delocalized f electrons.
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4. B. Möller, P. Wölfle, Phys. Rev. B 48, 10320 (1993).
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